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Appendix 1 

Running Variance Estimate 

 

The method of Running Variance Estimate (RVE) is designed for analysis of joint probability 

distribution of variables. The picture below shows the scatter plot of two variables. Marginal 

distributions (the distributions of the points projection upon axes) are very close to the normal one 

but the image in general differ from an ellipsis that corresponds to correlated normal distributions. 

Such a picture corresponds to SLODR that means the smaller correlation between variables when 

they have a big values (the upper right quadrant of scatter plot), and bigger correlation between 

variables when they have a small values (the top-left quadrant of scatter plot). 

 

 
 

We begin our description from two dimensional example presented by the picture. Let f(𝑥1, 𝑥2). 
be two-dimensional normal distribution with standard normal marginal and correlation ρ (which 

could be considered as positive and not equal to 1). This distribution density is expressed by 

formula:  
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Changing variable 𝑦1 = (𝑥1 + 𝑥2)/√2 и 𝑦2 = (𝑥1 − 𝑥2)/√2 (this may be done by substitution in 

the formula given above 𝑥1 = (𝑦1 + 𝑦2)/√2 и 𝑥2 = (𝑦1 − 𝑦2)/√2), we get 
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Doing so we get independent random values у1 and у2, having variations 1 +  𝜌 and 

1 —  𝜌 respectively. 

Mark that the sum (х1 − х̄)2 + (х2 − х̄)2 due to Pythagoras’ theorem is equal to the hypothenuse 

squared that lies between points (𝑥1, 𝑥2) and (�̄�,  �̄�) i.e. just the 𝑦2 squared. That is the estimate of 

variation of the random value 𝑦2 = (𝑥1 − 𝑥2)/√2 (it is produced by the one-point sample but 



using the general mean equal to zero) that is equal to 1 - ρ. This у2 is the RVE value for ‘respondent’ 

presented by (𝑥1, 𝑥2). 
Taking mean value for the set of ‘respondents’ we get more exact variance estimate of 1 - р. As у1 

and у2 are independent random values, we can sum any subset of the sample, having got different 

estimates of the same value. For example, we can take two subsamples: that one defined by the 

condition у1 > 0, and other one defined by the condition у1 <= 0. The proportion of these estimates 

has F-distribution, and we can then test the hypothesis on the equality of estimates on low and high 

subsamples of the sample. If the proportion is extremely big we have argument for SLODR effect 

in the sample. 

Taking smaller partitions one can see the presence of any other dependencies RVE on g.  

 

When there are more variables the calculation may be easily generalized. Then the sum (х1 −
х̄)2+. . . +(х𝑛 − х̄)2 estimates the general variance of the (𝑛 –  1)-dimensional normal random 

value, defined upon the hyper-plane that is orthogonal to the vector (�̄�,  �̄�. . .  �̄�). Since the 

correlation of all our original variables are equal as we proposed, than for any orthonormal basis 

in this hyper-plane the random value projections upon these coordinate axes were independent and 

not correlated with the random value projection upon axis collinear to the vector (�̄�,  �̄�. . .   �̄�) (that 

may be considered as factor g). The variance estimated of the (𝑛 −  1)-dimensional random value 

is equal to n – 1 –  𝜌 (while the g-variance is 1 +  𝜌). This variance as we proposed may be 

estimated with any subsample of the sample. We can take two subsamples as in the two-

dimensional example and get the F-ratio with corresponding degrees of freedom.  Or we can use 

any other division of sample and find more complicated dependences RVE on factor g. 

If inter-correlations of original variables are not equal it is necessary to take weighted sum instead 

of (х1 − х̄)2+. . . +(х𝑛 − х̄)2but in the case of  ρ12 = ρ34 and ρ13 = ρ23 = ρ14 = ρ24 (that is almost so 

for our data) the weighting coefficients are equal due to evident symmetrical properties of the 

correlation matrix. 
 


